Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Testability of Homomorphism Inadmissibility

Property Testing Meets Database Theory
Authors: Hubie Chen; Yuichi Yoshida;

Testability of Homomorphism Inadmissibility

Abstract

In this paper, we utilize the perspective of property testing to consider the testability of relational database queries. A primary motivation is the desire to avoid reading an entire database to decide a property thereof. We focus on conjunctive queries, which are the most basic and heavily studied database queries. Each conjunctive query can be represented as a relational structure A such that deciding if the conjunctive query is satisfied by a relational structure B is equivalent to deciding if there exists a homomorphism from A to B. We phrase our results in terms of homomorphisms. Precisely, we study, for each relational structure A, the testability of homomorphism inadmissibility from A. We consider algorithms that have oracle access to an input relational structure B and that distinguish, with high probability, the case where there is no homomorphism from A to B, from the case where one needs to remove a constant fraction of tuples from B in order to suppress all such homomorphisms. We provide a complete characterization of the structures A from which one can test homomorphism inadmissibility with one-sided error by making a constant number of queries to B. Our characterization shows that homomorphism inadmissibility from A is constant-query testable with one-sided error if and only if the core of A is alpha-acyclic. We also show that the injective version of the problem is constant-query testable with one-sided error if A is alpha-acyclic; this result generalizes existing results for testing subgraph-freeness in the general graph model.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!