
doi: 10.3390/su151612539
Emotions are vital for identifying an individual’s attitude and mental condition. Detecting and classifying emotions in Natural Language Processing applications can improve Human–Computer Interaction systems, leading to effective decision making in organizations. Several studies on emotion classification have employed word embedding as a feature extraction method, but they do not consider the sentiment polarity of words. Moreover, relying exclusively on deep learning models to extract linguistic features may result in misclassifications due to the small training dataset. In this paper, we present a hybrid feature extraction model using human-engineered features combined with deep learning based features for emotion classification in English text. The proposed model uses data augmentation, captures contextual information, integrates knowledge from lexical resources, and employs deep learning models, including Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Encoder Representation and Transformer (BERT), to address the issues mentioned above. The proposed model with hybrid features attained the highest Jaccard accuracy on two of the benchmark datasets, with 68.40% on SemEval-2018 and 53.45% on the GoEmotions dataset. The results show the significance of the proposed technique, and we can conclude that the incorporation of the hybrid features improves the performance of the baseline models.
emotion classification; feature extraction; natural language processing; neural networks; word embeddings; social media
emotion classification; feature extraction; natural language processing; neural networks; word embeddings; social media
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
