Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2015
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2015
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PMCA activity and membrane tubulin affect deformability of erythrocytes from normal and hypertensive human subjects

Authors: Monesterolo, Noelia Edith; Nigra, Ayelén D.; Campetelli, Alexis Nazareno; Santander, Verónica Silvina; Rivelli Antonelli, Juan Franco; Arce, Carlos Angel; Casale, Cesar Horacio;

PMCA activity and membrane tubulin affect deformability of erythrocytes from normal and hypertensive human subjects

Abstract

Our previous studies demonstrated formation of a complex between acetylated tubulin and brain plasma membrane Ca(2+)-ATPase (PMCA), and the effect of the lipid environment on structure of this complex and on PMCA activity. Deformability of erythrocytes from hypertensive human subjects was reduced by an increase in membrane tubulin content. In the present study, we examined the regulation of PMCA activity by tubulin in normotensive and hypertensive erythrocytes, and the effect of exogenously added diacylglycerol (DAG) and phosphatidic acid (PA) on erythrocyte deformability. Some of the key findings were that: (i) PMCA was associated with tubulin in normotensive and hypertensive erythrocytes, (ii) PMCA enzyme activity was directly correlated with erythrocyte deformability, and (iii) when tubulin was present in the erythrocyte membrane, treatment with DAG or PA led to increased deformability and associated PMCA activity. Taken together, our findings indicate that PMCA activity is involved in deformability of both normotensive and hypertensive erythrocytes. This rheological property of erythrocytes is affected by acetylated tubulin and its lipid environment because both regulate PMCA activity.

Keywords

Male, Erythrocytes, Immunoblotting, Phosphatidic Acid, Biophysics, Phosphatidic Acids, Biochemistry, Diglycerides, Plasma Membrane Calcium-Transporting ATPases, PMCA, Tubulin, https://purl.org/becyt/ford/1.6, Erythrocyte Deformability, Phosphatidic acid, Humans, https://purl.org/becyt/ford/1, Cells, Cultured, Aged, Cell Biology, Middle Aged, Microscopy, Fluorescence, Hypertension, Female, Diacylglycerol, Pmca, Regulation, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
Green
hybrid