Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Biochemistry
Article . 1996 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Biochemistry
Article . 1996 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

NDF induces expression of a novel 46 kD protein in estrogen receptor positive breast cancer cells

Authors: R, Kumar; M, Mandal; B J, Ratzkin; N, Liu; A, Lipton;

NDF induces expression of a novel 46 kD protein in estrogen receptor positive breast cancer cells

Abstract

Most human breast tumors start as estrogen-dependent, but during the course of the disease become refractory to hormone therapy. The transition of breast tumors from estrogen dependent to independent behavior may be regulated by autocrine and/or paracrine growth factor(s) that are independent of the estrogen receptor (ER). We have investigated the role(s) of NDF (neu-differentiation factor) in the biology of estrogen positive breast cancer cells by using MCF-7 cells as a model system. Treatment of MCF-7 cells with human recombinant NDF-beta 2 (NDF) inhibited the ER expression by 70% and this was associated with growth stimulation in an estrogen-independent manner. To explore the mechanism(s) of action of NDF in MCF-7 cells, we examined the expression of NDF-inducible gene products. We report here that NDF stimulated the levels of expression of a 46 kD protein (p46) (in addition to few minor proteins) in ER positive breast cancer cells including MCF-7, T-47-D, and ZR-75-R cells but not in ER negative breast cancer cells including MDA-231, SK-BR-3, and MDA-468 cells. This effect of NDF was due to induction in the rate of synthesis of new p46. The observed NDF-mediated induction of p46 expression was specific as there was no such effect by epidermal growth factor or 17-beta-estradiol, and inclusion of actinomycin D partially inhibited the p46 induction elicited by NDF. NDF-inducible stimulation of p46 expression was an early event (2-6 h) which preceded the period of down-regulation of ER expression by NDF. These results support the existence of NDF-responsive specific cellular pathway(s) that may regulate ER, and these interactions could play a role(s) in hormone-independence of ER positive breast cancer cells.

Keywords

Hydrolysis, Neoplasm Proteins, Gene Expression Regulation, Neoplastic, Receptors, Estrogen, Tumor Cells, Cultured, Humans, Phosphorylation, Receptors, Progesterone, Glycoproteins, Neuregulins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!