
doi: 10.3390/en13112838
In this paper, a novel control circuit that can connect fuel cell (FC) modules in parallel is proposed, which is particularly useful when the employed FCs have different electrical characteristics. Conventional methods (e.g., DC/DC converters) are not applicable in such situations because they cannot regulate the power output of each source in a parallel-connected topology. Consequently, the uniformity requirement of FCs increases and becomes costly. In contrast to existing methods, the proposed method adopts a novel power-feedback method to control the power output of each FC module under both rated conditions and load changes, which in turn determines the operating point of each FC module. Therefore, the uniformity requirement can be relaxed. For proof of concept, the experiments employed two FC-like sources with different I–V characteristics. The experimental results indicated that the power assignment under the rated condition had a relative error of < 6.62%. The distribution ratio error under the load change was < 7.43%. Therefore, the proposed method can regulate the power output (operation point) of each parallel-connected FC-like power source.
energy conversion, Technology, DC/DC converter, T, power distribution, parallel architectures, fuel cells
energy conversion, Technology, DC/DC converter, T, power distribution, parallel architectures, fuel cells
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
