Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
Journal of Knot Theory and Its Ramifications
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The reduced Dijkgraaf–Witten invariant of twist knots in the Bloch group of a finite field

The reduced Dijkgraaf-Witten invariant of twist knots in the Bloch group of a finite field
Authors: Hiroaki Karuo;

The reduced Dijkgraaf–Witten invariant of twist knots in the Bloch group of a finite field

Abstract

Let [Formula: see text] be a closed oriented 3-manifold and let [Formula: see text] be a discrete group. We consider a representation [Formula: see text]. For a 3-cocycle [Formula: see text], the Dijkgraaf–Witten invariant is given by [Formula: see text], where [Formula: see text] is the map induced by [Formula: see text], and [Formula: see text] denotes the fundamental class of [Formula: see text]. Note that [Formula: see text], where [Formula: see text] is the map induced by [Formula: see text], we consider an equivalent invariant [Formula: see text], and we also regard it as the Dijkgraaf–Witten invariant. In 2004, Neumann described the complex hyperbolic volume of [Formula: see text] in terms of the image of the Dijkgraaf–Witten invariant for [Formula: see text] by the Bloch–Wigner map from [Formula: see text] to the Bloch group of [Formula: see text]. In this paper, by replacing [Formula: see text] with a finite field [Formula: see text], we calculate the reduced Dijkgraaf–Witten invariants of the complements of twist knots, where the reduced Dijkgraaf–Witten invariant is the image of the Dijkgraaf–Witten invariant for SL[Formula: see text] by the Bloch–Wigner map from [Formula: see text] to the Bloch group of [Formula: see text].

Keywords

twist knots, Dijkgraaf-Witten invariant, Knot theory, Invariants of 3-manifolds (including skein modules, character varieties), Bloch groups, finite fields, Hyperbolic 3-manifolds

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!