<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A minimal perfect hash function (MPHF) bijectively maps a set S of objects to the first |S| integers. It can be used as a building block in databases and data compression. RecSplit [Esposito et al., ALENEX'20] is currently the most space efficient practical minimal perfect hash function. It heavily relies on trying out hash functions in a brute force way. We introduce rotation fitting, a new technique that makes the search more efficient by drastically reducing the number of tried hash functions. Additionally, we greatly improve the construction time of RecSplit by harnessing parallelism on the level of bits, vectors, cores, and GPUs. In combination, the resulting improvements yield speedups up to 239 on an 8-core CPU and up to 5438 using a GPU. The original single-threaded RecSplit implementation needs 1.5 hours to construct an MPHF for 5 Million objects with 1.56 bits per object. On the GPU, we achieve the same space usage in just 5 seconds. Given that the speedups are larger than the increase in energy consumption, our implementation is more energy efficient than the original implementation.
ddc:004, FOS: Computer and information sciences, parallel computing, DATA processing & computer science, parallel perfect hashing, GPU, SIMD, 004, Information systems → Point lookups, vector instructions, Computer Science - Data Structures and Algorithms, bit parallelism, Data Structures and Algorithms (cs.DS), Theory of computation → Data compression, info:eu-repo/classification/ddc/004, compressed data structure, ddc: ddc:004
ddc:004, FOS: Computer and information sciences, parallel computing, DATA processing & computer science, parallel perfect hashing, GPU, SIMD, 004, Information systems → Point lookups, vector instructions, Computer Science - Data Structures and Algorithms, bit parallelism, Data Structures and Algorithms (cs.DS), Theory of computation → Data compression, info:eu-repo/classification/ddc/004, compressed data structure, ddc: ddc:004
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |