Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Cyclearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article
Data sources: UnpayWall
Cell Cycle
Article . 2009 . Peer-reviewed
Data sources: Crossref
Cell Cycle
Article . 2009
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SMC5 and MMS21 are required for chromosome cohesion and mitotic progression

Authors: Dimitrios A. Skoufias; Leila Touat-Todeschini; Robert L. Margolis; Susanne Behlke-Steinert;

SMC5 and MMS21 are required for chromosome cohesion and mitotic progression

Abstract

Members of the structural maintenance of chromosome (SMC) protein family have essential functions during mitosis, ensuring chromosome condensation (SMC2/4) and cohesion (SMC1/3). The SMC5/6 complex has been implicated in a variety of DNA maintenance processes but unlike the other SMC proteins, SMC5/6 have not been attributed any role in mitosis. Here, we find that ablation of either SMC5 or the SUMO-ligase MMS21 leads to premature sister chromatid separation prior to anaphase. The failure of normal chromosome alignment activates the spindle assembly checkpoint and blocks mitotic progression. Interestingly, there is no similar mitotic response to ablation of SMC6. Further, we show that mitotic SMC5 co-elutes from column fractions that contain MMS21 but lack SMC6. Our results thus establish that SMC5 is crucial for mitotic progression and maintenance of sister chromatid cohesion during mitosis, and that this role of SMC5 seems to be independent of the SMC5/6 complex.

Keywords

Chromosome Aberrations, Chromosomal Proteins, Non-Histone, Mitosis, Cell Cycle Proteins, Chromatids, Ligases, Phenotype, Cell Line, Tumor, Chromosome Segregation, Humans, RNA, Small Interfering, Metaphase, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
bronze