Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Insect Molecular Bio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Insect Molecular Biology
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bowman‐Birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster

Authors: H-M, Li; L, Sun; O, Mittapalli; W M, Muir; J, Xie; J, Wu; B J, Schemerhorn; +6 Authors

Bowman‐Birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster

Abstract

Abstract Bowman‐Birk inhibitor (BBI) is toxic when fed to certain insects, including the fruit fly, Drosophila melanogaster . Dietary BBI has been demonstrated to slow growth and increase insect mortality by inhibiting the digestive enzymes trypsin and chymotrypsin, resulting in a reduced supply of amino acids. In mammals, BBI influences cellular energy metabolism. Therefore, we tested the hypothesis that dietary BBI affects energy‐associated pathways in the D. melanogaster midgut. Through microarray and metabolomic analyses, we show that dietary BBI affects energy utilization pathways in the midgut cells of D. melanogaster . In addition, ultrastructure studies indicate that microvilli are significantly shortened in BBI‐fed larvae. These data provide further insights into the complex cellular response of insects to dietary protease inhibitors.

Keywords

Base Sequence, Microvilli, Gene Expression Profiling, Molecular Sequence Data, Regulatory Sequences, Nucleic Acid, Gas Chromatography-Mass Spectrometry, Gastrointestinal Tract, Drosophila melanogaster, Animals, Metabolomics, Energy Metabolism, Metabolic Networks and Pathways, Protein Binding, Transcription Factors, Trypsin Inhibitor, Bowman-Birk Soybean

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!