
AbstractThe microbial transfer of electrons to extracellularly located solid compounds, termed extracellular electron transport (EET), is critical for microbial electrode catalysis. Although the components of the EET pathway in the outer membrane (OM) have been identified, the role of electron/cation coupling in EET kinetics is poorly understood. We studied the dynamics of proton transport associated with EET in an OM flavocytochrome complex in Shewanella oneidensis MR‐1. Using a whole‐cell electrochemical assay, a significant kinetic isotope effect (KIE) was observed following the addition of deuterated water (D2O). The removal of a flavin cofactor or key components of the OM flavocytochrome complex significantly increased the KIE in the presence of D2O to values that were significantly larger than those reported for proton channels and ATP synthase, thus indicating that proton transport by OM flavocytochrome complexes limits the rate of EET.
Communications
Communications
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
