Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biological Conservat...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biological Conservation
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Responses of cycads with different life histories to the impact of plant collecting: simulation models to determine important life history stages and population recovery times

Authors: Domitilla Raimondo; John S. Donaldson;

Responses of cycads with different life histories to the impact of plant collecting: simulation models to determine important life history stages and population recovery times

Abstract

Abstract Collection of plants and seeds from wild populations threatens a large number of cycad species. We investigated to what extent individual life history stages contribute to population growth (λ) and compared two species with major differences in life histories in the African genus Encephalartos: Encephalartos cycadifolius, a highly persistent grassland species that resprouts after fire, and Encephalartos villosus, a relatively fast growing, non-sprouting forest species. Several harvesting scenarios impacting different sized individuals were simulated to determine the sensitivity of the two functional types to harvesting. In both species λ was most sensitive to changes in abundance of adult plants. The harvesting of seeds had minimal impact on population growth rates, whereas harvesting of adult plants led to rapid population decline. This response from two very different functional types suggests that the conservation of adult plants is critical for all cycad species. Despite similar responses to adult mortality, the two species had substantially different population growth rates. This determined recovery time after harvesting of adult individuals. Encephalartos cycadifolius is typical of highly persistent plant species associated with low levels of recruitment and unable to recover from even small losses of adults within a reasonable conservation time frame (

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?