Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Commun...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Communications in Heat and Mass Transfer
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of finite element based grids and simulations on evaluation of Nusselt numbers for heatfunctions within square and triangular cavities involving multiple discrete heaters

Authors: Debayan Das; Leo Lukose; Tanmay Basak;

Role of finite element based grids and simulations on evaluation of Nusselt numbers for heatfunctions within square and triangular cavities involving multiple discrete heaters

Abstract

Abstract Nusselt number is an important non-dimensional parameter which quantifies the heat transfer rate. Local Nusselt number is useful in predicting the heat transfer rate along the various hot and cold sections of the side walls in a discretely heated enclosed cavity. In addition, the overall heat balance in an enclosed cavity (total heat delivered by the hot isothermal walls should be equal to the total heat gained by the cold isothermal walls) can be validated via the average Nusselt numbers. Current finite element based simulations and post-processing have been carried out in order to analyze the influence of the multiple heaters on the Nusselt number along various sections (hot and cold) of the side walls in discretely heated square and triangular (design 1 and design 2) cavities. The working fluid is considered to be air (Pr = 0.7) and the numerical studies have been carried out for a large range of Rayleigh number (Ra = 103–105) for four different biquadratic elements (24 × 24, 28 × 28, 32 × 32 and 34 × 34). The current work also estimates the fractional error in the heat balance (ϵ) and it is clearly inferred that ϵ is comparatively lower for 34 × 34 biquadratic elements. Current work also reveals that the fractional error (ϵ) is mainly induced due to the sharp variations in the Nusselt number at the cold-hot junctions along the side walls. The present study also involves the detailed evaluation of the heatfunction (Π) expressions along the cold-hot junctions of the side walls. The computations of the heatfunctions are intrinsically related to the Nusselt numbers of the hot-cold junctions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!