Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Patterns of bryozoan endemism through the Ordovician–Silurian transition

Authors: Joseph F. Pachut; Robert L. Anstey; Michael E. Tuckey;

Patterns of bryozoan endemism through the Ordovician–Silurian transition

Abstract

Area cladograms produced by parsimony analysis of endemicity illustrate historically developed biogeographical associations among Caradocian, Ashgillian, Llandoverian, and Wenlockian bryozoans. Areas in North America, Siberia, and Baltica were organized into three provinces and 12 biomes over a time interval of 35 million years. Six of these biomes belonged to the North American-Siberian Province and became extinct during the Ashgillian. Three biomes represent a successional series of biogeographical associations in the Late Ordovician of Baltica, and the middle biome of this succession is most closely related to that of the Wenlockian platform in North America. All four Silurian biomes are represented in Late Ordovician local areas, indicating that the associations important in the recovery radiation were already in existence prior to the extinction events. Three of these four biomes expanded their geographic extent in the wake of the Late Ordovician extinctions. Several biome extinction and replacement events took place during lowstands of sea level, suggesting that biogeographic reorganizations took place as a consequence of habitat loss in epeiric seas. Biome development largely depended on the extent of major lithotopes and their intersections with deep ocean and climatic barriers. The loss of regional habitats, associated with marine regression, was a key factor in biome extinction and reorganization, and indicates that biogeography played a significant role in the Late Ordovician mass extinctions and Silurian recovery radiations. Vicariance hypotheses are needed to account for the development of barriers subdividing ancestral areas, whereas hypotheses of congruent dispersal are required to explain the appearance of biomes in geographically disjunct areas.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?