Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Structur...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Structures
Article . 1989 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A direct comparison of three algorithms for reducing profile and wavefront

Authors: S.W. Sloan; W.S. Ng;

A direct comparison of three algorithms for reducing profile and wavefront

Abstract

Abstract The effectiveness of the reverse Cuthill-McKee, Gibbs-King and Sloan ordering algorithms for reducing the profile and wavefront of a sparse matrix with a symmetric pattern of zeros is assessed by applying them to each of Everstine's 30 test problems and comparing the results with those obtained by Armstrong's simulated annealing algorithm. This last procedure, although much too slow for practical use, is believed to give profiles which are close to the minimum and thus provides useful benchmark results for comparing possible procedures. For the test problems of Everstine, the reverse Cuthill-McKee procedure furnishes profiles which, on average, are 31% above those produced by the simulated annealing method. In the worst case, the reverse Cuthill-McKee algorithm yields a profile which is 114% in excess of the corresponding simulated annealing profile. The Gibbs-King scheme is generally more reliable than the reverse Cuthill-McKee scheme, but still yields an average profile which is 22% above that produced by the simulated annealing algorithm. Its worst-case performance gives a profile which is 67% in excess of the simulated annealing profile. The Sloan algorithm appears to be a substantial improvement on both the reverse Cuthill-McKee and Gibbs-King methods when measured by its average and worst-case profiles which are, respectively, 10 and 24% above those of the simulated annealing method. The root-mean-square wavefront reductions for the three algorithms mimic those of the profile reductions except that, in general, they are slightly further from the optimum values. In addition to those for Everstine's cases, some test results for a set of rectangular grid problems are also given. These examples correspond to meshes of 2D linear and quadratic finite elements which are used frequently in practice. The relative performance of the various algorithms is generally similar to that for Everstine's test problems although the spread of results is reduced significantly.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!