
doi: 10.1007/bf02936163
It is known that the parametric boundary equation for the main component in the Mandelbrot set represents a cardioid. We derive an epicycloidal boundary equation of the main component in the degree-n bifurcation set by extending the parameter which describes the cardioid in the Mandelbrot set. Computational results as well as some useful properties are presented together with the programming source codes written inMathematica. Various boundaries are displayed for 2≤n≤7 and show a good agreement with the theory presented here. The known boundary equation enables us to significantly reduce the construction time for the degree-n bifurcation set.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
