Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
License: CC BY
Data sources: UnpayWall
The Plant Cell
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DELLAs Function as Coactivators of GAI-ASSOCIATED FACTOR1 in Regulation of Gibberellin Homeostasis and Signaling inArabidopsis

Authors: Jutarou, Fukazawa; Hiroshi, Teramura; Satoru, Murakoshi; Kei, Nasuno; Naotaka, Nishida; Takeshi, Ito; Michiteru, Yoshida; +3 Authors

DELLAs Function as Coactivators of GAI-ASSOCIATED FACTOR1 in Regulation of Gibberellin Homeostasis and Signaling inArabidopsis

Abstract

AbstractGibberellins (GAs) are essential regulators of plant development, and DELLAs are negative regulators of GA signaling. The mechanism of GA-dependent transcription has been explained by DELLA-mediated titration of transcriptional activators and their release through the degradation of DELLAs in response to GA. However, the effect of GA on genome-wide expression is predominantly repression, suggesting the existence of unknown mechanisms of GA function. In this study, we identified an Arabidopsis thaliana DELLA binding transcription factor, GAI-ASSOCIATED FACTOR1 (GAF1). GAF1 shows high homology to INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS. GA responsiveness was decreased in the double mutant gaf1 idd1, whereas it was enhanced in a GAF1 overexpressor. GAF1 binds to genes that are subject to GA feedback regulation. Furthermore, we found that GAF1 interacts with the corepressor TOPLESS RELATED (TPR) and that DELLAs and TPR act as coactivators and a corepressor of GAF1, respectively. GA converts the GAF1 complex from transcriptional activator to repressor via the degradation of DELLAs. These results indicate that DELLAs turn on or off two sets of GA-regulated genes via dual functions, namely titration and coactivation, providing a mechanism for the integrative regulation of plant growth and GA homeostasis.

Keywords

Arabidopsis Proteins, Arabidopsis, Gene Expression, Plants, Genetically Modified, Antibodies, Gibberellins, Ribonuclease P, Mutagenesis, Insertional, Plant Growth Regulators, Gene Expression Regulation, Plant, Genes, Reporter, Seedlings, Two-Hybrid System Techniques, Homeostasis, Promoter Regions, Genetic, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    195
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
195
Top 1%
Top 10%
Top 1%
hybrid