Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-INSA Toulousearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSA Toulouse
Article . 2022
Data sources: HAL-INSA Toulouse
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Journal of Power Sources
Article . 2022 . Peer-reviewed
http://dx.doi.org/10.1016/j.jp...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of protic ionic liquid electrolytes for porous RuO2 micro-supercapacitors

Authors: Seenath, Jensheer Shamsudeen; Pech, David; Rochefort, Dominic;

Investigation of protic ionic liquid electrolytes for porous RuO2 micro-supercapacitors

Abstract

The rapid advancement of the Internet of things (IoT) with applications across various sectors urges the development of miniaturized energy-storage devices that can harvest or deliver energy with high power capabilities. While micro-supercapacitors can meet the high-power requirements of ubiquitous sensors connected to IoT networks, their low voltage and low energy density remain a major bottleneck preventing their wide-scale adoption. In this report, we develop micro-supercapacitors using RuO2 electrodes providing pseudocapacitive charge storage in protic ionic liquid-based non-aqueous electrolytes while enlarging their operational voltage. The triethylammonium bis(trifluoromethanesulfonyl)imide (TEAH-TFSI)-based interdigitated porous RuO2 micro-supercapacitors showed an extended cell voltage up to 2 V with 4 times more energy density compared with conventional H2SO4 electrolyte. We then developed an all-solid-state micro-supercapacitor using TEAH-TFSI-based ionogel electrolyte able to deliver high areal capacitance (78 mF cm-2 at 2 mV s-1) and long-term cycling stability that is superior to state-of-the-art ionogel-based micro-supercapacitors employing carbonbased or pseudocapacitive materials. This study gives a new perspective to develop all-solidstate micro-supercapacitors using pseudocapacitive active materials that can operate in ionicliquid-based non-aqueous electrolytes compatible with on-chip IoT-based device applications seeking high areal energy/ power performance.

Keywords

[CHIM.MATE] Chemical Sciences/Material chemistry, [SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, [SPI.NRJ]Engineering Sciences [physics]/Electric power, 600, Porous Micro-supercapacitor, [CHIM.MATE]Chemical Sciences/Material chemistry, Protic Ionic Liquids, 540, Protic ionic liquids, Porous micro-supercapacitor, RuO2, [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, Pseudocapacitance, Ionogel, [SPI.NRJ] Engineering Sciences [physics]/Electric power

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green