Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nagoya Mathematical Journal
Article . 2025 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LOCAL COHOMOLOGY UNDER SMALL PERTURBATIONS

Local cohomology under small perturbations
Authors: LUÍS DUARTE;

LOCAL COHOMOLOGY UNDER SMALL PERTURBATIONS

Abstract

AbstractLet $(R,\mathfrak {m})$ be a Noetherian local ring and I an ideal of R. We study how local cohomology modules with support in $\mathfrak {m}$ change for small perturbations J of I, that is, for ideals J such that $I\equiv J\bmod \mathfrak {m}^N$ for large N, under the hypothesis that $R/I$ and $R/J$ share the same Hilbert function. As one of our main results, we show that if $R/I$ is generalized Cohen–Macaulay, then the local cohomology modules of $R/J$ are isomorphic to the corresponding local cohomology modules of $R/I$ , except possibly the top one. In particular, this answers a question raised by Quy and V. D. Trung. Our approach also allows us to prove that if $R/I$ is Buchsbaum, then so is $R/J$ . Finally, under some additional assumptions, we show that if $R/I$ satisfies Serre’s property $(S_n)$ , then so does $R/J$ .

Related Organizations
Keywords

initial module, Structure, classification theorems for modules and ideals in commutative rings, perturbation, Mathematics - Commutative Algebra, Commutative Algebra (math.AC), local cohomology, (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.), 13C05, 13D03, 13D40, 13D45, Local cohomology and commutative rings, Hilbert function, Buchsbaum ring, FOS: Mathematics, Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities