Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Medicine R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Medicine Reports
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MicroRNA-10a silencing reverses cisplatin resistance in the A549/cisplatin human lung cancer cell line via the transforming growth factor-β/Smad2/STAT3/STAT5 pathway

Authors: Wei, Sun; Yiping, Ma; Peng, Chen; Dong, Wang;

MicroRNA-10a silencing reverses cisplatin resistance in the A549/cisplatin human lung cancer cell line via the transforming growth factor-β/Smad2/STAT3/STAT5 pathway

Abstract

Lung cancer is one of the primary causes of mortality worldwide and drug resistance is the key contributing factor which results in the failure of lung cancer chemotherapy. Previous studies have shown that microRNA (miR)‑10a was involved in the reversal of cisplatin (DDP) resistance in numerous types of tumors; however, the underlying mechanism of action of this remains to be fully elucidated. In the present study, miR‑10a silencing in human DDP‑resistant lung cancer A549/DDP cells was demonstrated to improve DDP sensitivity, apoptosis, intracellular rhodamine‑123 content as well as the expression and activity of caspase‑3/8. In addition, miR‑10a suppressed the cellular expression of P‑glycoprotein, multi‑drug resistance protein (MDR) 1, MDR‑associated protein 1, RhoE, B cell lymphoma‑2 and survivin in A549/DDP cells. Furthermore, miR‑10a silencing inhibited the secretion of transforming growth factor (TGF)‑β, phosphorylation of Sma‑ and Mad‑related protein (Smad)2, signal transducer and activator of transcription (STAT)3 and STAT5, the transcriptional activity of hypoxia‑inducible factor and eukaryotic translation initiation factor 4E in human lung cancer A549/DDP cell line. These results therefore indicated that miR‑10a may be a potential target for improving the effectiveness of lung cancer chemotherapy via regulation of the TGF‑β/Smad2/STAT3/STAT5 pathway.

Related Organizations
Keywords

STAT3 Transcription Factor, Lung Neoplasms, Antineoplastic Agents, Smad2 Protein, MicroRNAs, Drug Resistance, Neoplasm, Transforming Growth Factor beta, Cell Line, Tumor, STAT5 Transcription Factor, Humans, Gene Silencing, Cisplatin, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
bronze