Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2005 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
PLANT PHYSIOLOGY
Article . 2005
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evolutionary Divergence of Monocot and Dicot Methyl-CpG-Binding Domain Proteins

Authors: Nathan M, Springer; Shawn M, Kaeppler;

Evolutionary Divergence of Monocot and Dicot Methyl-CpG-Binding Domain Proteins

Abstract

Abstract The covalent modification of eukaryotic DNA by methylation of the 5′ carbon of cytosine residues is frequently associated with transcriptional silencing. In mammals, a potential mechanism for transducing DNA methylation patterns into altered transcription levels occurs via binding of methyl-CpG-binding domain (MBD) proteins. Mammalian MBD-containing proteins bind specifically to methylated DNA and recruit chromatin-modifying complexes containing histone deacetylase activities. Sequence similarity searches reveal the presence of multiple proteins in plants containing a putative MBD. Outside of the MBD itself, there is no sequence relationship between plant and mammalian MBD proteins. The plant MBD proteins can be divided into eight classes based on sequence similarity and phylogenetic analyses of sequences obtained from two complete genomes (rice [Oryza sativa] and Arabidopsis [Arabidopsis thaliana]) and from maize (Zea mays). Two classes of MBD proteins are only represented in dicot species. The striking divergence of plant and animal MBD-containing proteins is in stark contrast to the amino acid conservation of DNA methyltransferases across plants, animals, and fungi. This observation suggests the possibility that while plants and mammals have retained similar mechanisms for the establishment and maintenance of DNA methylation patterns, they may have evolved distinct mechanisms for the interpretation of these patterns.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Plants, Chromosomes, Plant, Evolution, Molecular, Humans, Amino Acid Sequence, Carrier Proteins, Sequence Alignment, Dinucleoside Phosphates, Phylogeny, Plant Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
hybrid