Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Discrete Mathematics...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Discrete Mathematics & Theoretical Computer Science
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Episciences
Article . 2024
License: CC BY NC ND
Data sources: Episciences
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2020
License: CC BY NC ND
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

Maker-Breaker domination number for Cartesian products of path graphs $P_2$ and $P_n$

Maker-breaker domination number for Cartesian products of path graphs \(P_2\) and \(P_n\)
Authors: Jovana Forcan; Jiayue Qi;

Maker-Breaker domination number for Cartesian products of path graphs $P_2$ and $P_n$

Abstract

We study the Maker-Breaker domination game played by Dominator and Staller on the vertex set of a given graph. Dominator wins when the vertices he has claimed form a dominating set of the graph. Staller wins if she makes it impossible for Dominator to win, or equivalently, she is able to claim some vertex and all its neighbours. Maker-Breaker domination number $\gamma_{MB}(G)$ ($\gamma '_{MB}(G)$) of a graph $G$ is defined to be the minimum number of moves for Dominator to guarantee his winning when he plays first (second). We investigate these two invariants for the Cartesian product of any two graphs. We obtain upper bounds for the Maker-Breaker domination number of the Cartesian product of two arbitrary graphs. Also, we give upper bounds for the Maker-Breaker domination number of the Cartesian product of the complete graph with two vertices and an arbitrary graph. Most importantly, we prove that $\gamma'_{MB}(P_2\square P_n)=n$ for $n\geq 1$, $\gamma_{MB}(P_2\square P_n)$ equals $n$, $n-1$, $n-2$, for $1\leq n\leq 4$, $5\leq n\leq 12$, and $n\geq 13$, respectively. For the disjoint union of $P_2\square P_n$s, we show that $\gamma_{MB}'(\dot\cup_{i=1}^k(P_2\square P_n)_i)=k\cdot n$ ($n\geq 1$), and that $\gamma_{MB}(\dot\cup_{i=1}^k(P_2\square P_n)_i)$ equals $k\cdot n$, $k\cdot n-1$, $k\cdot n-2$ for $1\leq n\leq 4$, $5\leq n\leq 12$, and $n\geq 13$, respectively.

Keywords

mathematics - combinatorics, Graph operations (line graphs, products, etc.), 91A24, 05C69, 05C57, maker-breaker domination game, positional game, 91a24, 05c69, 05c57, Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), QA1-939, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), maker-breaker domination number for grids, Mathematics, winning strategy on grids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Published in a Diamond OA journal