
The generalized multi-state k-out-of-n:G system model defined by Huang provides more flexibilities for modeling of multi-state systems. However, the performance evaluation algorithm they proposed for such systems is not efficient, and it is applicable only when the k/sub i/ values follow a monotonic pattern. In this paper, we defined the concept of generalized multi-state k-out-of-n:F systems. There is an equivalent generalized multi-state k-out-of-n:G system with respect to each generalized multi-state k-out-of-n:F system, and vice versa. The form of minimal cut vector for generalized multi-state k-out-of-n:F systems is presented. An efficient recursive algorithm based on minimal cut vectors is developed to evaluate the state distributions of a generalized multi-state k-out-of-n:F system. Thus, a generalized multi-state k-out-of-n:G system can first be transformed to the equivalent generalized multi-state k-out-of-n:F system, and then be evaluated using the proposed recursive algorithm. Numerical examples are given to illustrate the effectiveness and efficiencies of the proposed recursive algorithms.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 79 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
