Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1997 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

X-ray analysis of azido-thymidine diphosphate binding to nucleoside diphosphate kinase

Authors: Y, Xu; O, Sellam; S, Moréra; S, Sarfati; R, Biondi; M, Véron; J, Janin;

X-ray analysis of azido-thymidine diphosphate binding to nucleoside diphosphate kinase

Abstract

To be effective as antiviral agent, AZT (3′-azido-3′-deoxythymidine) must be converted to a triphosphate derivative by cellular kinases. The conversion is inefficient and, to understand why AZT diphosphate is a poor substrate of nucleoside diphosphate (NDP) kinase, we determined a 2.3-Å x-ray structure of a complex with the N119A point mutant of Dictyostelium NDP kinase. It shows that the analog binds at the same site and, except for the sugar ring pucker which is different, binds in the same way as the natural substrate thymidine diphosphate. However, the azido group that replaces the 3′OH of the deoxyribose in AZT displaces a lysine side chain involved in catalysis. Moreover, it is unable to make an internal hydrogen bond to the oxygen bridging the β- and γ-phosphate, which plays an important part in phosphate transfer.

Keywords

Diphosphates, Binding Sites, Nucleoside-Diphosphate Kinase, Molecular Sequence Data, Animals, Dictyostelium, Crystallography, X-Ray, Zidovudine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%
bronze