Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Theoretical Foundati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theoretical Foundations of Chemical Engineering
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kinetics of bioactive compounds extraction from plant material using boiling solvent

Authors: Salamatin A.; Khaziev R.; Makarova A.; Ivanova S.;

Kinetics of bioactive compounds extraction from plant material using boiling solvent

Abstract

© 2015, Pleiades Publishing, Ltd. A model of extracting the natural products through boiling ground plant material in a solvent using a bain-marie is proposed. The model trait is that it has only one adaptation parameter, i.e., the diffusion coefficient of the solute in the plant material, which depends on the solvent and plant material properties. The model is applied to study the kinetics of extraction, and the minimal solvent volume, which is used for extraction, is theoretically determined. A comparison of the model with the experimental data of the extraction of hydrophobic diterpene acids from sage leaves and hydrophilic flavonoids from common knotgrass herb is in good agreement with the experiment. Experiments performed with finely ground plant material (particle diameter is less than 1 mm) show that, for most extraction conditions, more than 90% of the target compounds are extracted by the time the solvent starts to boil.

Country
Russian Federation
Related Organizations
Keywords

extraction kinetics, 615, flavonoid, 540, mathematical simulation, diterpene

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!