Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chalmers Research
Article . 2021
Data sources: Chalmers Research
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Electron Devices
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced High-Frequency Performance of Top-Gated Graphene FETs Due to Substrate- Induced Improvements in Charge Carrier Saturation Velocity

Authors: Muhammad Asad; Kjell O. Jeppson; Andrei Vorobiev; Marlene Bonmann; Jan Stake;

Enhanced High-Frequency Performance of Top-Gated Graphene FETs Due to Substrate- Induced Improvements in Charge Carrier Saturation Velocity

Abstract

The high-frequency performance of top-gated graphene field-effect transistors (GFETs) depends to a large extent on the saturation velocity of the charge carriers, a velocity limited by inelastic scattering by surface optical phonons from the dielectrics surrounding the channel. In this work, we show that, by simply changing the graphene channel surrounding dielectric with a material having higher optical phonon energy, one could improve the transit frequency and maximum frequency of oscillation of GFETs. We fabricated GFETs on conventional SiO2/Si substrates by adding a thin Al2O3 interfacial buffer layer on top of SiO2/Si substrates, a material with about 30% higher optical phonon energy than that of SiO2, and compared performance with that of GFETs fabricated without adding the interfacial layer. From S-parameter measurements, a transit frequency and a maximum frequency of oscillation of 43 and 46 GHz, respectively, were obtained for GFETs on Al2O3 with 0.5- $\mu \text{m}$ gate length. These values are approximately 30% higher than those for state-of-the-art GFETs of the same gate length on SiO2. For relating the improvement of GFET high-frequency performance to improvements in the charge carrier saturation velocity, we used standard methods to extract the charge carrier velocity from the channel transit time. A comparison between two sets of GFETs with and without the interfacial Al2O3 layer showed that the charge carrier saturation velocity had increased from $1.5\cdot 10^{{7}}$ to $2\cdot 10^{{7}}$ cm/s.

Country
Sweden
Related Organizations
Keywords

Other Electrical Engineering, Electronic Engineering, Information Engineering, graphene, Field-effect transistors (FETs), Nano Technology, saturation velocity, Electrical Engineering, Electronic Engineering, Information Engineering, transit frequency, optical phonons, maximum frequency of oscillation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Green
bronze