Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied M...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Applied Microbiology
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2013
Data sources: HAL INRAE
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rapid enumeration of Oenococcus oeni during malolactic fermentation by flow cytometry

Authors: Bouix, Marielle; Ghorbal, Sarrah;

Rapid enumeration of Oenococcus oeni during malolactic fermentation by flow cytometry

Abstract

The aim of this study was to provide a method to rapidly enumerate Oenococcus oeni cells during malolactic fermentation (MLF). To keep MLF under control, it is important to monitor the growth of the bacteria O. oeni. However, the enumeration of O. oeni using the plate count technique requires a very long incubation time of about 10 days or more, which is not adapted to monitoring MLF in real time.Flow cytometry (FCM), in combination with several fluorescent probes, is a rapid method for counting large numbers of bacterial cells. However, probes based on fluorescein [FDA, carboxyfluorescein diacetate (cFDA)] did not give good results for O. oeni. For the first time, we propose using the BacLight™ kit for enumeration of O. oeni, and we compare the results with three methods: plate count and FCM, in combination with either fluorescein probes or the BacLight™kit. The last method provides a perfect correlation with the plate count method.FCM coupled with the Baclight™ kit makes it possible to count O. oeni cells during MLF with a perfect correlation with the plate count method.The result is obtained in 20 min vs 10 days with the reference method which will be very useful for wine microbiologists. Moreover, it should be emphasized that FDA/cFDA staining is not recommended because it can lead to an erroneous count during the latency period or at the end of growth due to the variation of intracellular pH in the O. oeni cells during growth.

Country
France
Keywords

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences, carboxyfluorescein diacetate, Colony Count, Microbial, Wine, 630, enumeration, LACTIC-ACBACTERIA, Syto9, WATER, YEAST-CELLS, Oenococcus, propidium iodide, [SDV.SA] Life Sciences [q-bio]/Agricultural sciences, flow cytometry, WINE, Flow Cytometry, Fluoresceins, VIABILITY, malolactic fermentation, VIABLE BACTERIA, Fermentation, INTRACELLULAR PH, Food Microbiology, Oenococcus oeni

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
bronze
Related to Research communities
INRAE