
AbstractThe plant mitochondrial genome is complex in structure, owing to a high degree of recombination activity that subdivides the genome and increases genetic variation. The replication activity of various portions of the mitochondrial genome appears to be nonuniform, providing the plant with an ability to modulate its mitochondrial genotype during development. These and other interesting features of the plant mitochondrial genome suggest that adaptive changes have occurred in DNA maintenance and transmission that will provide insight into unique aspects of plant mitochondrial biology and mitochondrial-chloroplast coevolution. A search in the Arabidopsis genome for genes involved in the regulation of mitochondrial DNA metabolism revealed a region of chromosome III that is unusually rich in genes for mitochondrial DNA and RNA maintenance. An apparently similar genetic linkage was observed in the rice genome. Several of the genes identified within the chromosome III interval appear to target the plastid or to be targeted dually to the mitochondria and the plastid, suggesting that the process of endosymbiosis likely is accompanied by an intimate coevolution of these two organelles for their genome maintenance functions.
Statistics and Probability, 570, RNA, Mitochondrial, Molecular Sequence Data, Arabidopsis, DNA, Mitochondrial, Chromosomes, Plant, Evolution, Molecular, Mitochondrial Proteins, Gene Duplication, Physical Sciences and Mathematics, Other Statistics and Probability, Amino Acid Sequence, Plastids, Rickettsia, Phylogeny, 580, Cell Nucleus, Sequence Homology, Amino Acid, Chromosome Mapping, Multigene Family, RNA, Genome, Plant
Statistics and Probability, 570, RNA, Mitochondrial, Molecular Sequence Data, Arabidopsis, DNA, Mitochondrial, Chromosomes, Plant, Evolution, Molecular, Mitochondrial Proteins, Gene Duplication, Physical Sciences and Mathematics, Other Statistics and Probability, Amino Acid Sequence, Plastids, Rickettsia, Phylogeny, 580, Cell Nucleus, Sequence Homology, Amino Acid, Chromosome Mapping, Multigene Family, RNA, Genome, Plant
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
