Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots

Authors: Enrique Ramírez-Chávez; Alfredo Cruz-Ramírez; Araceli Oropeza-Aburto; Luis Herrera-Estrella; Francisco Razo-Hernández;

Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots

Abstract

Low phosphate (Pi) availability is one of the major constraints for plant productivity in natural and agricultural ecosystems. Plants have evolved a myriad of developmental and biochemical mechanisms to increase internal Pi uptake and utilization efficiency. One important biochemical pathway leading to an increase in internal Pi availability is the hydrolysis of phospholipids. Hydrolyzed phospholipids are replaced by nonphosphorus lipids such as galactolipids and sulfolipids, which help to maintain the functionality and structure of membrane systems. Here we report that a member of the Arabidopsis phospholipase D gene family ( PLDZ2 ) is gradually induced upon Pi starvation in both shoots and roots. From lipid content analysis we show that an Arabidopsis pldz2 mutant is defective in the hydrolysis of phospholipids and has a reduced capacity to accumulate galactolipids under limiting Pi conditions. Morphological analysis of the pldz2 root system shows a premature change in root architecture in response to Pi starvation. These results show that PLDZ2 is involved in the eukaryotic galactolipid biosynthesis pathway, specifically in hydrolyzing phosphatidylcholine and phosphatidylethanolamine to produce diacylglycerol for digalactosyldiacylglycerol synthesis and free Pi to sustain other Pi-requiring processes.

Keywords

Base Sequence, DNA, Plant, Arabidopsis Proteins, Galactolipids, Arabidopsis, Gene Expression, Genes, Plant, Lipids, Models, Biological, Plant Roots, Phosphates, Mutation, Phospholipase D

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    231
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
231
Top 1%
Top 10%
Top 1%
bronze