<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 21878751
Obesity is characterized by excessive adipose tissue mass and associated with type 2 diabetes and cardiovascular diseases. To fight obesity and its sequels, elucidating molecular events that govern adipocyte differentiation and function is of key importance. MicroRNAs (miRNAs) are a novel class of non-coding, regulatory RNAs that have been shown to regulate crucial cellular processes, including differentiation. Several studies have already assigned miRNAs to distinct functions in murine adipocyte differentiation but only a few studies did so for humans. Here, we investigated the function of miR-30c in human adipogenesis. miR-30c expression was increased during adipogenesis of human multipotent adipose-derived stem (hMADS) cells, and miR-30c overexpression enforced adipocyte marker gene induction and triglyceride accumulation. miRNA target prediction revealed two putative direct targets of miR-30c, PAI-1 (SERPINE1) and ALK2 (ACVR1, ACTRI), both inversely regulated to miR-30c during adipogenesis and responsive to miR-30c overexpression. Luciferase reporter assays confirmed PAI-1 and ALK2 as direct miR-30c targets. Moreover, reciprocal expression between miR-30c and PAI-1 could also be demonstrated in white adipose tissue of obesity mouse models, suggesting a potential physiological role of miR-30c for PAI-1 regulation in the obese state. Validating PAI-1 and ALK-2 as miR-30c mediators in adipogenesis revealed that not single silencing of PAI-1 or ALK2, but only co-silencing of both phenocopied the pro-adipogenic miR-30c effect. Thus, miR-30c can target two, so far not interconnected genes in distinct pathways, supporting the idea that miRNAs might coordinate larger regulatory networks than previously anticipated.
Adipogenesis, Adipose Tissue, White, Multipotent Stem Cells, Mice, Obese, Cell Differentiation, Mesenchymal Stem Cells, Mice, Transgenic, Cell Line, Mice, MicroRNAs, Plasminogen Activator Inhibitor 1, Adipocytes, Animals, Humans, RNA Interference, Obesity, RNA, Small Interfering, Activin Receptors, Type I
Adipogenesis, Adipose Tissue, White, Multipotent Stem Cells, Mice, Obese, Cell Differentiation, Mesenchymal Stem Cells, Mice, Transgenic, Cell Line, Mice, MicroRNAs, Plasminogen Activator Inhibitor 1, Adipocytes, Animals, Humans, RNA Interference, Obesity, RNA, Small Interfering, Activin Receptors, Type I
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 129 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |