Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Codegree conditions for tilling balanced complete $3$-partite $3$-graphs and generalized 4-cycles

Authors: Hou, Xinmin; Liu, Boyuan; Ma, Yue;

Codegree conditions for tilling balanced complete $3$-partite $3$-graphs and generalized 4-cycles

Abstract

Given two $k$-graphs $F$ and $H$, a perfect $F$-tiling (also called an $F$-factor) in $H$ is a set of vertex disjoint copies of $F$ that together cover the vertex set of $H$. Let $t_{k-1}(n, F)$ be the smallest integer $t$ such that every $k$-graph $H$ on $n$ vertices with minimum codegree at least $t$ contains a perfect $F$-tiling. Mycroft (JCTA, 2016) determined the asymptotic values of $t_{k-1}(n, F)$ for $k$-partite $k$-graphs $F$. Mycroft also conjectured that the error terms $o(n)$ in $t_{k-1}(n, F)$ can be replaced by a constant that depends only on $F$. In this paper, we improve the error term of Mycroft's result to a sub-linear term when $F=K^3(m)$, the complete $3$-partite $3$-graph with each part of size $m$. We also show that the sub-linear term is tight for $K^3(2)$, {the result also provides another family of counterexamples of Mycroft's conjecture (Gao, Han, Zhao (arXiv, 2016) gave a family of counterexamples when $H$ is a $k$-partite $k$-graph with some restrictions.)} Finally, we show that Mycroft's conjecture holds for generalized 4-cycle $C_4^3$ (the 3-graph on six vertices and four distinct edges $A, B, C, D$ with $A\cup B= C\cup D$ and $A\cap B=C\cap D=\emptyset$), i.e. we determine the exact value of $t_2(n, C_4^3)$.

26 pages

Keywords

FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green