
doi: 10.1086/678237
pmid: 25461648
Decreases in sea ice have altered habitat use and activity patterns of female Pacific walruses Odobenus rosmarus divergens and could affect their energetic demands, reproductive success, and population status. However, a lack of physiological data from walruses has hampered efforts to develop the bioenergetics models required for fully understanding potential population-level impacts. We analyzed long-term longitudinal data sets of caloric consumption and body mass from nine female Pacific walruses housed at six aquaria using a hierarchical Bayesian approach to quantify relative energetic demands for maintenance, growth, pregnancy, and lactation. By examining body mass fluctuations in response to food consumption, the model explicitly uncoupled caloric demand from caloric intake. This is important for pinnipeds because they sequester and deplete large quantities of lipids throughout their lifetimes. Model outputs were scaled to account for activity levels typical of free-ranging Pacific walruses, averaging 83% of the time active in water and 17% of the time hauled-out resting. Estimated caloric requirements ranged from 26,900 kcal d(-1) for 2-yr-olds to 93,370 kcal d(-1) for simultaneously lactating and pregnant walruses. Daily consumption requirements were higher for pregnancy than lactation, reflecting energetic demands of increasing body size and lipid deposition during pregnancy. Although walruses forage during lactation, fat sequestered during pregnancy sustained 27% of caloric requirements during the first month of lactation, suggesting that walruses use a mixed strategy of capital and income breeding. Ultimately, this model will aid in our understanding of the energetic and population consequences of sea ice loss.
Body Weight, Bayes Theorem, Maternal Nutritional Physiological Phenomena, Models, Theoretical, Pregnancy, Animals, Lactation, Female, Walruses, Energy Intake, Energy Metabolism
Body Weight, Bayes Theorem, Maternal Nutritional Physiological Phenomena, Models, Theoretical, Pregnancy, Animals, Lactation, Female, Walruses, Energy Intake, Energy Metabolism
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
