
In this work, we define higher-order Jacobsthal–Lucas quaternions with the help of higher-order Jacobsthal–Lucas numbers. We examine some identities of higher-order Jacobsthal–Lucas quaternions. We introduce their basic definitions and properties. We give Binet’s formula, Cassini’s identity, Catalan’s identity, d’Ocagne identity, generating functions, and exponential generating functions of the higher-order Jacobsthal–Lucas quaternions. We also give some relations between higher-order Jacobsthal and Jacobsthal–Lucas quaternions.
Jacobsthal–Lucas quaternions, QA1-939, Jacobsthal–Lucas quaternions; higher-order Jacobsthal–Lucas quaternions; Binet formula, Binet formula, higher-order Jacobsthal–Lucas quaternions, Mathematics
Jacobsthal–Lucas quaternions, QA1-939, Jacobsthal–Lucas quaternions; higher-order Jacobsthal–Lucas quaternions; Binet formula, Binet formula, higher-order Jacobsthal–Lucas quaternions, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
