Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Paleolimn...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Paleolimnology
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia

Authors: Nazarova, Larisa; Herzschuh, Ulrike; Wetterich, Sebastian; Kumke, T.; Pestryakova, L.;

Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia

Abstract

We investigated the subfossil chironomid fauna of 150 lakes situated in Yakutia, northeastern Russia. The objective of this study was to assess the relationship between chironomid assemblage composition and the environment and to develop chironomid inference models for quantifying past regional climate and environmental changes in this poorly investigated area of northern Russia. The environmental data and sediment samples for chironomid analysis were collected in 5 consecutive years, 2003–2007, from several regions of Yakutia. The lakes spanned wide latitudinal and longitudinal ranges and were distributed through several environmental zones (arctic tundra, typical tundra, steppe-tundra, boreal coniferous forest), but all were situated within the zone of continuous permafrost. Mean July temperature (TJuly) varied from 3.4°C in the Laptev Sea region to 18.8°C in central Yakutia near Yakutsk. Water depth (WD) varied from 0.1 to 17.1 m. TJuly and WD were identified as the strongest predictor variables explaining the chironomid communitiy composition and distribution of the taxa in our data set. Quantitative transfer functions were developed using two unimodal regression calibration techniques: simple weighted averaging (WA) and weighted averaging partial least squares (WA-PLS). The two-component TJuly WA-PLS model had the best performance. It produced a strong coefficient of determination (r2boot = 0.87), root mean square error of prediction (RMSEP = 1.93), and max bias (max biasboot = 2.17). For WD, the one-component WA-PLS model had the best performance (r2boot = 0.62, RMSEP = 0.35, max biasboot = 0.47).

Country
Germany
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
Green
bronze