Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2008
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2007
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Propagation of $L^{1}$ and $L^{\infty}$ Maxwellian weighted bounds for derivatives of solutions to the homogeneous elastic Boltzmann Equation

Propagation of \(L^1\) and \(L^\infty \) Maxwellian weighted bounds for derivatives of solutions to the homogeneous elastic Boltzmann equation
Authors: Alonso, Ricardo J.; Gamba, Irene M.;

Propagation of $L^{1}$ and $L^{\infty}$ Maxwellian weighted bounds for derivatives of solutions to the homogeneous elastic Boltzmann Equation

Abstract

We consider the $n$-dimensional space homogeneous Boltzmann equation for elastic collisions for variable hard potentials with Grad (angular) cutoff. We prove sharp moment inequalities, the propagation of $L^1$-Maxwellian weighted estimates, and consequently, the propagation $L^\infty$-Maxwellian weighted estimates to all derivatives of the initial value problem associated to the afore mentioned problem. More specifically, we extend to all derivatives of the initial value problem associated to this class of Boltzmann equations corresponding sharp moment (Povzner) inequalities and time propagation of $L^1$-Maxwellian weighted estimates as originally developed A.V. Bobylev in the case of hard spheres in 3 dimensions; an improved sharp moments inequalities to a larger class of angular cross sections and $L^1$-exponential bounds in the case of stationary states to Boltzmann equations for inelastic interaction problems with `heating' sources, by A.V. Bobylev, I.M. Gamba and V.Panferov, where high energy tail decay rates depend on the inelasticity coefficient and the the type of `heating' source; and more recently, extended to variable hard potentials with angular cutoff by I.M. Gamba, V. Panferov and C. Villani in the elastic case collision case and so $L^1$-Maxwellian weighted estimated were shown to propagate if initial states have such property. In addition, we also extend to all derivatives the propagation of $L^\infty$-Maxwellian weighted estimates to solutions of the initial value problem to the Boltzmann equations for elastic collisions for variable hard potentials with Grad (angular) cutoff.

24 pages

Related Organizations
Keywords

Homogeneous Boltzmann equation, Hard spheres, High order propagation of regularity estimates, Kinetic theory of gases in time-dependent statistical mechanics, 82C40, 35B05, 76P05, FOS: Physical sciences, Mathematical Physics (math-ph), homogeneous Boltzmann equation, Statistical mechanics of gases, Moment (Povzner) inequalities, Rarefied gas flows, Boltzmann equation in fluid mechanics, Mathematics - Analysis of PDEs, hard spheres, high order propagation of regularity estimates, FOS: Mathematics, Kinetic theory of gases in equilibrium statistical mechanics, Granular flows, moment (Povzner) inequalities, Mathematical Physics, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green