Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

α2B-Adrenergic receptors activate MAPK and modulate proliferation of primary cultured proximal tubule cells

Authors: Daniel, Cussac; Stéphane, Schaak; Céline, Gales; Christodoulos, Flordellis; Colette, Denis; Hervé, Paris;

α2B-Adrenergic receptors activate MAPK and modulate proliferation of primary cultured proximal tubule cells

Abstract

In the rat proximal tubule, the α2B-adrenergic receptor (α2B-AR) enhances Na+reabsorption by increasing the activity of Na+/H+exchanger isoform NHE3. The mechanisms involved are unclear, and inhibition of cAMP production remains controversial. In this study, we reinvestigated α2B-AR signaling pathways using rat proximal tubule cells (PTC) in primary culture and LLC-PK1cells permanently transfected with the RNG gene (rat nonglycosylated α2-AR). Binding experiments indicated that PTC express substantial amounts of α2B-AR (130 fmol/mg protein), and only RNG transcripts were detected. In both cell types, the α2B-AR is coupled to G protein, and its stimulation by dexmedetomidine, but not by UK-14304, provoked a significant inhibition of the accumulation of cAMP induced by forskolin or parathyroid hormone. Exposure to α2-agonists increased arachidonic acid release and caused extracellular signal-regulated kinase (ERK)1/2 phosphorylation, which correlated with enhanced mitogen-activated protein kinse (MAPK) activity and nuclear translocation. MAPK phosphorylation was blunted by pertussis toxin but not by protein kinase C desensitization, and it coincided with transient phosphorylation of Shc. Finally, treatment with UK-14304 accelerated cell growth. Further studies will be necessary to clarify the precise mechanism of MAPK activation, but the present data suggest that α2B-AR may play a positive role during tubular regeneration.

Related Organizations
Keywords

Mitogen-Activated Protein Kinase 1, Arachidonic Acid, Epinephrine, Ionophores, Cell Membrane, Cell Line, Enzyme Activation, Kidney Tubules, Proximal, Pertussis Toxin, Idazoxan, Animals, Humans, Mitogen-Activated Protein Kinases, Phosphorylation, Adrenergic alpha-Antagonists, Calcimycin, Cell Division, Cells, Cultured, Protein Kinase C, Quinolizines

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!