Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2023 . Peer-reviewed
Data sources: Research.fi
versions View all 2 versions
addClaim

Characteristics of precipitating energetic ions/electrons associated with the wave‐particle interaction in the plasmaspheric plume

Authors: Zhigang Yuan; Ying Xiong; Dedong Wang; Ming Li; Xiaohua Deng; A. G. Yahnin; T. Raita; +1 Authors

Characteristics of precipitating energetic ions/electrons associated with the wave‐particle interaction in the plasmaspheric plume

Abstract

In this paper, we present characteristics of precipitating energetic ions/electrons associated with the wave‐particle interaction in the plasmaspheric plume during the geomagnetic storm on July 18, 2005 with observations of the NOAA15 NOAA16, IMAGE satellites and Finnish network of search coil magnetometers. Conjugate observations of the NOAA15 satellite and the Finnish network of search coil magnetometers have demonstrated that a sharp enhancement of the precipitating ion flux is a result of ring current (RC) ions scattered into the loss cone by EMIC waves. Those precipitating RC ions lead to a detached subauroral proton arc observed by the IMAGE FUV. In addition, with observations of NOAA15 and NOAA16, the peak of precipitating electron flux was equatorward to that of precipitating proton flux, which is in agreement with the region separation of ELF hiss and EMIC waves observed by the Cluster C1 in the Yuan et al. (2012) companion paper. In combination with the result of the companion paper, we demonstrate the link between the wave activities (ELF hiss, EMIC waves) in plasmaspheric plumes and energetic ion/electron precipitation at ionospheric altitudes. Therefore, it is an important characteristic of the plasmaspheric plumes‐RC‐ionosphere interaction during a geomagnetic storm that the precipitation of energetic protons is latitudinally separated from that of energetic electrons.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze