
AbstractMany resequencing algorithms for reducing the bandwidth, profile and wavefront of sparse symmetric matrices have been published. In finite element applications, the sparsity of a matrix is related to the nodal ordering of the finite element mesh. Some of the most successful algorithms, which are based on graph theory, require a pair of starting pseudoperipheral nodes. These nodes, located at nearly maximal distance apart, are determined using heuristic schemes. This paper presents an alternative pseadoperipheral node finder, which is based on the algorithm developed by Gibbs, Poole and Stockmeyer. This modified scheme is suitable for nodal reordering of finite meshes and provides more consistency in the effective selection of the starting nodes in problems where the selection becomes arbitrary due to the number of candidates for these starting nodes. This case arises, in particular, for square meshes. The modified scheme was implemented in Gibbs‐Poole‐Stockmeyer, Gibbs‐King and Sloan algorithms. Test problems of these modified algorithms include: (1) Everstine's 30 benchmark problems; (2) sets of square, rectangular and annular (cylindrical) finite element meshes with quadrilateral and triangular elements; and (3) additional examples originating from mesh refinement schemes. The results demonstrate that the modifications to the original algorithms contribute to the improvement of the reliability of all the resequencing algorithms tested herein for the nodal reordering of finite element meshes.
bandwidth, root mean square wavefront, Finite element methods applied to problems in solid mechanics, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs, symmetric region
bandwidth, root mean square wavefront, Finite element methods applied to problems in solid mechanics, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs, symmetric region
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
