Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Applied Material...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Applied Materials & Interfaces
Article . 2019 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Near-Infrared-Absorbing Indolizine-Porphyrin Push–Pull Dye for Dye-Sensitized Solar Cells

Authors: Hammad Cheema; Alexandra Baumann; E. Kirkbride Loya; Phillip Brogdon; Louis E. McNamara; Casey A. Carpenter; Nathan I. Hammer; +3 Authors

Near-Infrared-Absorbing Indolizine-Porphyrin Push–Pull Dye for Dye-Sensitized Solar Cells

Abstract

Porphyrins are attractive chromophores for application in dye-sensitized solar cells (DSCs), as judicious tuning of donor-acceptor properties can enable excellent near-infrared (NIR) absorption and exceptional device performance. Here, we report a porphyrin-based dye (SM85) conjugated to the planar strong electron donor, indolizine, designed to extend absorption further into the NIR region by inducing π-π interactions such as head-to-tail dye aggregation. The optoelectronic consequences of indolizine incorporation in SM85 include raising the ground-state oxidation potential and broadening and red-shifting ultraviolet-visible-NIR absorptions, along with increased molar absorptivity when compared to the dye SM315. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations confirm the push-pull character of SM85, which features an overlap of frontier occupied and unoccupied orbitals. Steady-state spectrophotometric analyses reveal the presence of solution aggregates via absorption and emission spectroscopies. Aggregate modes were probed by DFT and TD-DFT analyses, and plausible models are presented. SM85-based DSC devices demonstrate a 5.7% power conversion efficiency (PCE) at full sun (7.4% PCE at 10% sun) with an exceptional improvement to the incident photon-to-current conversion onset at ∼850 nm. Current dynamics measurements, time-correlated single photon counting, and computational analyses are used to better understand device performances. This study puts forward a novel intramolecular charge-transfer porphyrin system with a dramatic shift into the NIR region, as is needed for nonprecious metal-based sensitizers, and provides an example of controlled, donor-acceptor-mediated aggregation as a complementary strategy to traditional donor-acceptor modifications to single-molecule π-systems in accessing enhancements in long wavelength light harvesting in molecular-based optoelectronic devices.

Country
Netherlands
Related Organizations
Keywords

540

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!