
arXiv: 1604.03877
Consider two correlated sources $X$ and $Y$ generated from a joint distribution $p_{X,Y}$. Their G��cs-K��rner Common Information, a measure of common information that exploits the combinatorial structure of the distribution $p_{X,Y}$, leads to a source decomposition that exhibits the latent common parts in $X$ and $Y$. Using this source decomposition we construct an efficient distributed compression scheme, which can be efficiently used in the network setting as well. Then, we relax the combinatorial conditions on the source distribution, which results in an efficient scheme with a helper node, which can be thought of as a front-end cache. This relaxation leads to an inherent trade-off between the rate of the helper and the rate reduction at the sources, which we capture by a notion of optimal decomposition. We formulate this as an approximate G��cs-K��rner optimization. We then discuss properties of this optimization, and provide connections with the maximal correlation coefficient, as well as an efficient algorithm, both through the application of spectral graph theory to the induced bipartite graph of $p_{X,Y}$.
Submitted to ITW 2016
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
