Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Boreasarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Boreas
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Boreas
Article . 2003 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Boreas
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Signature of palaeo-ice-stream stagnation: till consolidation induced by basal freeze-on

Authors: Poul Christoffersen; Slawek Tulaczyk;

Signature of palaeo-ice-stream stagnation: till consolidation induced by basal freeze-on

Abstract

A combination of glaciological theory and geological observations was used to investigate the possibility of till consolidation being driven by basal freeze‐on beneath a stagnating, mid‐latitude palaeo‐ice stream. We focused on the case of the Baltic Ice Stream that advanced into Denmark at c. 15ka BP and which left behind a characteristic till sequence consisting of a strong and well‐consolidated till crust underlain by weak and poorly consolidated till. Our hypothesis is that basal freezing caused the markedly higher consolidation of the uppermost till layer. The freezing may have either triggered or simply just accompanied ice‐stream stoppage. To test the feasibility of this hypothesis, we have developed a numerical model that couples ice‐stream dynamics to time‐dependent changes of till properties. Despite relatively mild palaeo‐climatic conditions in this area during Late Pleistocene deglaciation (˜0°C), the ice‐stream model is capable of producing basal freezing when the effect of horizontal advection of cold ice is included. Our simulations of till response to basal freezing are based on thermodynamic concepts adapted from permafrost studies. Dewatering of till by basal freeze‐on may lead to overconsolidation (OCR>10). Based on the history of effective pressure changes in the till, we can predict postglacial till strength profiles using the SHANSEP method. In a series of numerical experiments we have examined the response of till strength to basal freeze‐on induced beneath a decaying ice sheet. We have come reasonably close to reproducing shear strength profiles for till deposited by the Baltic Ice Stream. These observations are most consistent with palaeo‐ice‐stream stagnation triggered by basal freezing and followed by abrupt retreat (<100 years) due to high surface ablation rates (>10 ma‐1).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
bronze