Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2009 . Peer-reviewed
Data sources: Crossref
Science
Article . 2009
versions View all 2 versions
addClaim

ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation

Authors: Kathryn E, Wellen; Georgia, Hatzivassiliou; Uma M, Sachdeva; Thi V, Bui; Justin R, Cross; Craig B, Thompson;

ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation

Abstract

Chromatin Modifier Modulates Gene Expression Modification of chromatin structure is usually thought of as a global, relatively nonspecific way of modulating gene expression. However, Wellen et al. (p. 1076 ; see the Perspective by Rathmell and Newgard ) demonstrate that such regulation helps link growth factor–stimulated increases in metabolism to appropriate changes in gene expression. Adenosine triphosphate (ATP)–citrate lyase (ACL), which converts citrate to acetyl–coenzyme A (CoA) in the mitochondria of mammalian cells during metabolism of glucose, was also found to be present in the nucleus, where it might regulate activity of histone acetyl transferases (HATs) by controlling the availability of acetyl-CoA. Indeed, depletion of ACL from cultured human colon carcinoma cells specifically decreased histone acetylation in the nucleus, but appeared not to affect the overall amount of acetylation of proteins in the cells. Loss of ACL in cultured mouse 3T3-L1 cells diminished the increase in histone acetylation normally associated with hormone-stimulated differentiation of these cells and inhibited the increase in expression of specific genes, such as that encoding the Glut4 glucose transporter. Thus, ACL may help cells link metabolic activity to changes in gene expression.

Related Organizations
Keywords

Cell Nucleus, Cytoplasm, Acetate-CoA Ligase, Acetylation, Cell Differentiation, 3T3 Cells, Citric Acid, Histone Deacetylases, Cell Line, Histone Deacetylase Inhibitors, Histones, Glucose, Gene Expression Regulation, Acetyl Coenzyme A, Cell Line, Tumor, ATP Citrate (pro-S)-Lyase, Adipocytes, Animals, Glycolysis, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.01%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2K
Top 0.01%
Top 0.1%
Top 0.1%
bronze