
Whale optimization algorithm is one of the recent nature-inspired optimization technique based on the behavior of bubble-net hunting strategy. In this paper, a novel binary version of whale optimization algorithm (bWOA) is proposed to select the optimal feature subset for dimensionality reduction and classifications problem. The new approach is based on a sigmoid transfer function (S-shape). By dealing with the feature selection problem, a free position of the whale must be transformed to their corresponding binary solutions. This transformation is performed by applying an S-shaped transfer function in every dimension that defines the probability of transforming the position vectors’ elements from 0 to 1 and vice versa and hence force the search agents to move in a binary space. K-NN classifier is applied to ensure that the selected features are the relevant ones. A set of criteria are used to evaluate and compare the proposed bWOA-S with the native one over eleven different datasets. The results proved that the new algorithm has a significant performance in finding the optimal feature.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 140 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
