Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ipdpsw...
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autonomous Mobile Robots: Refining the Computational Landscape

Refining the Computational Landscape
Authors: Kevin Buchin; Paola Flocchini; Irina Kostitsyna; Tom Peters; Nicola Santoro; Koichi Wada 0001;

Autonomous Mobile Robots: Refining the Computational Landscape

Abstract

Within distributed computing, the study of distributed systems of identical mobile computational entities, called robots, operating in a Euclidean space is rather extensive. When a robot is activated, it executes a Look-Compute-Move cycle: it takes a snapshot of the environment (Look); with this input, it computes its destination (Compute); and then it moves towards that destination (Move). The choice of the times a robot is activated and how long its cycle lasts is made by a fair (but adversarial) scheduler; three schedulers are usually considered: fully synchronous (Fsync), semi-synchronous (Ssync), and asynchronous (Async).Extensive investigations have been carried out, under all those schedulers, within four models, corresponding to different levels of computational and communication powers of the robots: OBLOT (the weakest), LUMI (the strongest), and two intermediate models FSTA and FCOM. The many results for specific problems have provided insights on the relationships between the models and with respect to the activation schedulers. Recently, a comprehensive characterization of these relationships has been provided with respect to the Fsync and Ssync schedulers; however, in several cases, the results were obtained under some restrictive assumptions (chirality and/or rigidity). In this paper, we improve the characterization by removing those assumptions, providing a refined map of the computational landscape for those robots. We also establish some preliminary results with respect to the Async scheduler.

Country
Netherlands
Keywords

distributed computing, oblivious, persistent memory, mobile robots, finite-state, finite communication

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!