Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Development Growth &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development Growth & Differentiation
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Disruption of the NCS‐1/frequenin‐related ncsA gene in Dictyostelium discoideum accelerates development

Authors: Barrie Coukell; Katharine Shim; Stephen Perusini; Anne Cameron;

Disruption of the NCS‐1/frequenin‐related ncsA gene in Dictyostelium discoideum accelerates development

Abstract

To learn more about the function of intracellular Ca2+ in Dictyostelium discoideum, we searched databases for sequences encoding potential members of the neuronal calcium sensor (NCS) family of Ca2+‐binding proteins. As a result, genes for five new putative Ca2+‐binding proteins were identified. Based on amino acid sequence alignments and phylogenetic analyses, one of these genes (ncsA) was determined to be closely related to NCS‐1/frequenin genes in other organisms. The protein product of ncsA (NcsA) binds 45Ca2+ and exhibits a dramatic gel mobility shift in the presence of Ca2+, suggesting that it is a Ca2+ sensor. ncsA‐null cells grow normally in axenic culture. However, on bacterial lawns, the ncsA‐null clones expand slowly and development begins prematurely within the plaques. In larger clones, ncsA‐null cells form narrow growth zones with evenly spaced aggregates along the inner edge, and closely packed fruiting bodies. An analysis of intracellular cyclic adenosine monophosphate (cAMP) levels, developmental timing on phosphate‐buffered saline (PBS) agar, and stage‐specific gene expression indicate that development of ncsA‐null cells is accelerated by 3–4 h. Together, these results suggest that NcsA might function in Dictyostelium to prevent cells from entering development prematurely in the presence of environmental nutrients.

Related Organizations
Keywords

Base Sequence, Sequence Homology, Amino Acid, Calcium-Binding Proteins, Genes, Protozoan, Molecular Sequence Data, Neuronal Calcium-Sensor Proteins, Neuropeptides, Animals, Dictyostelium, Amino Acid Sequence, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
bronze