
Increase in speeds of modern railway trains is usually accompanied by higher levels of generated ground vibrations. In the author's earlier paper [V.V. Krylov, Applied Acoustics, 44, 149–164 (1995)], it has been shown that especially large increase in vibration level may occur if train speeds v exceed the velocity of Rayleigh surface waves in the ground cR., i.e., v > cR. Such a situation might arise, for example, with French TGV trains for which speeds over 515 km/h have been achieved. The present paper investigates the effect of geological layered structure of the ground on ground vibrations generated by high-speed trains. It is shown that, since Rayleigh wave velocities in layered ground are dispersive and normally increase at lower frequencies associated with deeper penetration of surface wave energy into the ground, the trans-Rayleigh condition v > cR may not hold at very low frequencies. This will cause a noticeable reduction in low-frequency components of generated ground vibration spectra. Theoretical results are illustrated by numerically calculated frequency spectra of ground vibrations generated by single axle loads travelling at different speeds and by TGV or Eurostar high-speed trains.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
