Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GCN5-like Protein 1 (GCN5L1) Controls Mitochondrial Content through Coordinated Regulation of Mitochondrial Biogenesis and Mitophagy

Authors: Iain, Scott; Bradley R, Webster; Carmen K, Chan; Joshua U, Okonkwo; Kim, Han; Michael N, Sack;

GCN5-like Protein 1 (GCN5L1) Controls Mitochondrial Content through Coordinated Regulation of Mitochondrial Biogenesis and Mitophagy

Abstract

Cellular mitochondrial content is governed by the competing processes of organelle biogenesis and degradation. It is proposed that these programs are tightly regulated to ensure that the cell maintains sufficient organelles to meet its biosynthetic, energetic, and other homeostatic requirements. We recently reported that GCN5L1, a putative nutrient-sensing regulator, controls mitochondrial removal by autophagy. Here we show that genetic deletion of GCN5L1 has a direct positive effect on the expression and activity of Transcriptional Factor EB (TFEB), which acts as a master regulator of autophagy. Surprisingly, the induction of TFEB-mediated autophagy pathways does not diminish cellular mitochondrial content, as its activity is countered by induction of the mitochondrial biogenesis transcriptional co-activator PPARγ coactivator 1α (PGC-1α). Concurrent induction of the TFEB and PGC-1α pathways results in an increased mitochondrial turnover rate in GCN5L1(-/-) cells. Finally, we show that genetic knockdown of either TFEB or PGC-1α leads to a corresponding decrease in the expression of the other gene, indicating that these proteins act coordinately, and in opposition, to maintain cellular mitochondrial content in response to the modulation of nutrient-sensing signatures.

Related Organizations
Keywords

Mice, Knockout, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Mitophagy, Acetylation, Nerve Tissue Proteins, Fibroblasts, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha, Mitochondria, Mitochondrial Proteins, Mice, Acetyl Coenzyme A, Autophagy, Animals, Homeostasis, Lysosomes, Cells, Cultured, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 1%
Top 10%
Top 1%
gold