Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch bud exudate phenolics

Authors: Peltonen, P.A; Julkunen-Tiitto, R.; Vapaavuori, E.; Holopainen, J.K.;

Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch bud exudate phenolics

Abstract

AbstractThe effect of atmospheric change on birch aphid (Euceraphis betulae Koch) oviposition preference was examined and plant characteristics that are possibly responsible for the observed effects were investigated. It was hypothesized that the increasing concentrations of CO2 and O3 affect singly or in combination the oviposition of birch aphids via changes in host plant characteristics. Two genotypes of field‐growing silver birch (Betula pendula Roth) trees (clones 4 and 80), which were exposed to doubled ambient concentration of CO2 and O3, singly and in combination, in a 3‐year open‐top chamber experiment, were used in an aphid oviposition preference test. It was found that elevated CO2, irrespective of ozone concentration, increased the number of aphid eggs laid on clone 4, but not in clone 80. Several flavonoid aglycones were identified from the exudate coating of birch buds. Although elevated CO2 and O3 affected these phenolic compounds in clone 4, the effects did not correlate with the observed changes in aphid oviposition. It is suggested that neither bud length, which was not affected by the treatments, nor surface exudate phenolics mediate birch aphid oviposition preference.

Country
Finland
Keywords

610, hiilidioksidipitoisuus, koivu, 630, otsonipitoisuus

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!