Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurocomputingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurocomputing
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effective search for genetic-based machine learning systems via estimation of distribution algorithms and embedded feature reduction techniques

Authors: Jiadong Yang; Hua Xu; Peifa Jia;

Effective search for genetic-based machine learning systems via estimation of distribution algorithms and embedded feature reduction techniques

Abstract

Genetic-based machine learning (GBML) systems, which employ evolutionary algorithms (EAs) as search mechanisms, evolve rule-based classification models to represent target concepts. Compared to Michigan-style GBML, Pittsburgh-style GBML is expected to achieve more compact solutions. It has been shown that standard recombination operators in EAs do not assure an effective evolutionary search to solve sophisticated problems that contain strong interactions between features. On the other hand, when dealing with real-world classification tasks, irrelevant features not only complicate the problem but also incur unnecessary matchings in GBML systems, which increase the computational cost a lot. To handle the two problems mentioned above in an integrated manner, a new Pittsburgh-style GBML system is proposed. In the proposed method, classifiers are generated and recombined at two levels. At the high level, classifiers are recombined by rule-wise uniform crossover operators since each classifier consists of a variable-size rule set. At the low level, single rules contained in classifiers are reproduced via sampling Bayesian networks that characterize the global statistical information extracted from promising rules found so far. Furthermore, according to the statistical information in the rule population, an embedded approach is presented to detect and remove redundant features incrementally following the evolution of rule population. Results of empirical evaluation show that the proposed method outperforms the original Pittsburgh-style GBML system in terms of classification accuracy while reducing the computational cost. Furthermore, the proposed method is also competitive to other non-evolutionary, highly used machine learning methods. With respect to the performance of feature reduction, the proposed embedded approach is able to deliver solutions with higher classification accuracy when removing the same number of features as other feature reduction techniques do.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!