Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees

Authors: Carsten Burstedde; Lucas C. Wilcox; Omar Ghattas;

p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees

Abstract

We present scalable algorithms for parallel adaptive mesh refinement and coarsening (AMR), partitioning, and 2:1 balancing on computational domains composed of multiple connected two-dimensional quadtrees or three-dimensional octrees, referred to as a forest of octrees. By distributing the union of octants from all octrees in parallel, we combine the high scalability proven previously for adaptive single-octree algorithms with the geometric flexibility that can be achieved by arbitrarily connected hexahedral macromeshes, in which each macroelement is the root of an adapted octree. A key concept of our approach is an encoding scheme of the interoctree connectivity that permits arbitrary relative orientations between octrees. Based on this encoding we develop interoctree transformations of octants. These form the basis for high-level parallel octree algorithms, which are designed to interact with an application code such as a numerical solver for partial differential equations. We have implemented and tested these algorithms in the p4est software library. We demonstrate the parallel scalability of p4est on its own and in combination with two geophysics codes. Using p4est we generate and adapt multioctree meshes with up to $5.13\times10^{11}$ octants on as many as 220,320 CPU cores and execute the 2:1 balance algorithm in less than 10 seconds per million octants per process.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    568
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
568
Top 0.1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!