
arXiv: 2311.13357
Accurate particle simulations are essential for the next generation of experiments in astroparticle physics. The Monte Carlo simulation library PROPOSAL is a flexible tool to efficiently propagate high-energy leptons and photons through large volumes of media, for example in the context of underground observatories. It is written as a C++ library, including a Python interface. In this paper, the most recent updates of PROPOSAL are described, including the addition of electron, positron, and photon propagation, for which new interaction types have been implemented. This allows the usage of PROPOSAL to simulate electromagnetic particle cascades, for example in the context of air shower simulations. The precision of the propagation has been improved by including rare interaction processes, new photonuclear parametrizations, deflections in stochastic interactions, and the possibility of propagating in inhomogeneous density distributions. Additional technical improvements regarding the interpolation routine and the propagation algorithm are described.
58 pages, 18 figures, submitted to Computer Physics Communications
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), High Energy Physics - Experiment
High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), High Energy Physics - Experiment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
